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Abdrael. We consideraneural network proposed by Coolen and Kuijk that hasinteractions 
composed of two competing elements. The first is the Hopfield interaction for recall o f a  
set of stored patterns. The second is interactions between pairs of sites arranged so that 
the configuration undergoes a symmetry transformation at each parallel update. First we 
consider the effecl of the symmetry-transform interactions alone. We show that for sequen- 
tial updating the symmetry transformation is no longer carried out faithfully, but rather 
the spin configuration tends to a symmetry invariant. In  order to understand how the 
retrieval phase ofthe Hopfield model is disrupted by the symmetry-transform interactions 
we perform a replica symmetric analysis. We demonstrate that the symmetry-transform 
interactions generate a noire very similar to that of random external fields on the memory 
states. The phase diagram suggests the possibility of symmetry-invariant recognition for 
an extensive number of patterns and an optimal value for the symmetryuransform interac- 
tion strength. We present numerical simulations of the model under parallel dynamics to 
confirm these oredictions. 

1. Introduction 

The Hopfield model has been shown to be a robust model for pattern recognition 
[l-41 although it is not optimal with regard to storage capacity [5] or for the purpose 
of providing transformation invariant pattern recognition. In the model the pattern is 
considered as an N-bit vector {I?) where .$ is the value of the spin in pattern p at 
spin i. The robustness of the model stems from the co-operative nature of the recall 
process that has each spin interacting with all the others through synaptic connections. 
This gives the model a tolerance to various noises such as temperature [2], synaptic 
clipping and synaptic destruction [4]. Patterns are stored by giving the synaptic 
connections between spins values according to the Hopfield rule: 

The recall is performed by presenting a configuration {S.} to the network. If this 
configuration has macroscopic overlap with a pattern 1 then the order parameter m 
associated with this overlap is non-zero where 
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The field received at a site i is then composed of a signal and a noise 

M R Evans et a /  

1 

N + > i . i t r  
= ( r m  t- (r(,rSi. (4) 

- # - ~  c ~ - .  -:-~.., .~ 
I ne nrsi, signal, term is iinear in the overlap order parameier m and consequeniiy ihe 
larger the value of m the more likely the pattern is to be recalled. 

If we consider this process as adjudging whether a given configuration is correlated 
enough with a stored pattern then the measure of correlation used is the Hamming 
distance or number of incorrect sites. This ignores the possibility of the configuration 
being some simple transformation of a stored pattern. For example one would like to 

to sculpting more complicated basins of attraction on the energy landscape. For the 
example of recognizing a stored pattern and its reflection as the same input one in 
fact requires a disjoint domain of attraction with two basins. One basin is the usual 
Hopfield model basin of attraction comprising configurations a small Hamming dist- 
ance away from the stored pattern. The second basin should contain configurations a 

Crom the latter basin to the former, the Hopfield model must be modified. 
Recently several schemes have been proposed to perform such a task. One proposal 

involves the use of dynamic connection strengths [6,7]. Another option is to pre-process 
the image before presentation to the final network [S, 91. A third possibility is not to 
have preprocessing but to have competing directions within the configurational flow 

is a network that symmetry-transforms the presented configuration until a macroscopic 
overlap with one of the stored patterns is found. At this point in the configurational 
flow the Hopfield interactions predominate and the pattern is recalled. In effect the 
network performs its own pre-processing. 

To this end several mechanisms have been proposed. Dotsenko [lo] has used 
modifiable thresholdings as the component of the model that causes the symmetry- 
transformation to occur. Coolen and Kuijk [ll] have shown that the connections can 
be trained by example from pairs of configurations and their symmetry-transforms t o  
perform the desired symmetry transformation. 

In  the present work we consider the latter case [ll]. The total connection strengths 
are given by 

~ - " ~ , - * ~ - " - - " - : ~ ~ " - - ~ ~ " . - ~ - - * - - " " , - ~ ~ ~ . . - ~ " : . . - - . - . . " & - - A A - "  ..--.. TL:.." ---- ̂ _^^-I^ 
W F  L I W I S  L U  I G b U ~ , , k L G  a L G l l c L L c "  UL L I ' l I I J I ' l L C "  "C1>1"11U1 L1JLWIGY p'lL'c"1. 1 I l l >  Lu,,r;spurr"a 
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produced hy the dynamics of the network, The idea! that is sought with !his approach 

( 5 j  

The interactions that perform the transformation ( rj) only couple a site and its image 
site under the transformation. We will use the term 'local' io refer to the fact that the 
lattice is fully connected so that the sites can be rearranged to leave a site and its 
image adjacent to each other. In this sense the symmetry transform interaction is local 
as  opposed to H .  where all sites have interactions with each other and the interaction 
is therefore long-range. Our aim in this paper is to demonstrate that this interaction 
scheme is effective for an extensive number of stored patterns. In order to provide a 
theoretical framework we will study how the local symmetry-transform interactions 
acts as a noise upon the long range Hopfield interactions. In particular we wish to 
discover whether the retrieval phase of the Hopfield model persists in the presence of 

~ _. . -  
J .  =n..+,.. 

2, 4 'I ' 
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the symmetry transform interactions when an extensive number of patterns are stored. 
If this were the case, then it would suggest that symmetry invariant pattern recognition 
is possible for an extensive number of patterns. 

In section 2 we examine the symmetry transform interaction and show that it is 
only for parallel dynamics that the symmetry transform is faithfully carried out; for 
sequential dynamics the configurational flow is towards a symmetry invariant. This 
suggests that parallel dynamics are more suitable for symmetry invariant pattern 
recognition. However sequential dynamics allows us to write down a configurational 
energy and in section 3 analyse, within the replica symmetric ansatz, how the retrieval 
phase of the Hopfield model is affected by the symmetry transformation interactions. 
We find that the overall effect is very close to that caused by a random external field 
at each site. The main result of the section is that, for a range of symmetry transform 
interaction strengths, there is a retrieval phase for an extensive number of stored 
patterns. In section 4 we investigate whether the potential for symmetry invariant 
recognition of an extensive number of patterns is realized under parallel dynamics. 
We present extensive numerical simulations which confirm that this is the case. These 
simulations suggest an optimal value for the symmetry transform interaction strength 
which agrees well with a theoretical estimate relying on the results of section 3. 

2. The symmetry transform 

I n  order that the symmetry transform interactions be as ‘local’ as possible, in the sense 
described in section 1, we choose a Z, symmetry. This will also give the convenient 
property of symmetric interactions Jv = J,j. In the transformation each spin is acted 
upon by an element r of the group. The spin is either mapped onto itself by the 
identity element so that r(i)  = i or mapped onto another spin r(i) # i. I n  the latter 
case the Z ,  constraint r ( r ( i ) ) = i  ensures that the pair of spins at i and r( i )  are 
interchanged by the transformation. For simplicity we will set the number of spins 
mapped onto themselves to zero. 

A simple interaction [ I l l  that produces the above symmetry transformation is 
given by 

= O  i = j .  (7) 

Thus (6) couples sites to their image sites under the transformation. In order to see 
that a symmetry transformation is indeed performed by the interaction (6), consider 
the local field produced at a site i by this interaction at time f :  

= a S , , d r ) .  (8) 

The field at each site has the sign of the spin at the image of the site and so, at least 
at zero temperature under parallel dynamics, the transformation will be faithfully 
performed. For serial dynamics however, a single updating sweep allows the system 
to converge to a transformation invariant configuration. To see this, consider a pair 
of sites i and r(i). If starting from time 1, i is visited first in the updating sequence 
at time I , ,  then the spin at i will be updated to Smi,l(f) so that S , ( f , ) = S n i , , ( f ) .  When 
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the site ?r( i )  is visited at a later time r2, the local field will be h m C j l (  r2) = OS,( r2) = asi( r,) = 
aSmijl(r) so that the spin at a( i )  will already be aligned to its local field. Both spins 
then end up  taking the value Srij)(r). In contrast if r ( i )  is visited first both spins will 
end up taking the value of SJr). Clearly the order of updating within the sweep 
determines the final configuration but whatever order is chosen the final configuration 
will be symmetry invariant. It is now apparent that serial and parallel updating give 
contrasting dynamic tendencies: equation (8) showed that parallel dynamics faithfully 
performs the symmetry-transformation; sequential dynamics drives the configuration 
into a symmetry invariant. 

This point is rather interesting as it implies that the two different dynamics endow 
the model with rather different properties. Although we are not suggesting that this 
model is of particular biological relevance, we may recall that in the neural interpreta- 
tion the two dynamics represent different degrees of synchronization. This may then 
be an indication that synchronization is a parameter that could be utilized in neural 
information processing. 

M R Evans er a/ 

3. Disruption of the retrieval phase 

The main purpose of this paper is to demonstrate that symmetry invariant recognition 
is possible for an extensive number of patterns. A prerequisite for this is that the 
retrieval phase of the Hopfield model should persist in the presence of the symmetry 
transform interactions. Although we shall argue in section 4 that parallel dynamics are 
more suitable for invariant pattern recognition, a study of the model defined by random 
sequential dynamics will allow a quantitative analysis of when the retrieval phase is 
destroyed by the symmetry-transform interactions. In particular this will allow us to 
demonstrate the possibility of symmetry-invariant pattern recognition for an extensive 
number of stored patterns. 

The full model with random sequential dynamics has configurational energy 

To begin the calculation we must discuss the relevant order parameters. A classification 
of sites relevant to the symmetry transformation of our nominated pattern will clarify 
the choice of order parameters. 

1. The sites unchanged by the transformation: 

i=v ( i ) .  (10) 

2. Pairs of sites that are interchanged by the transformation and which take the 
same value in the pattern: 

i # a ( i )  and 5) = 6' W i l l .  (11) 

3. Pairs of sites that are interchanged by the transformation and which take values 
of opposite sign in the pattern: 

i # r ( i )  and 51 = -&Ai ) .  (12) 

We assume that the nominated patterns are random 

P ( 5 )  = + ( C Y -  l ) + S ( 5 +  1 ) )  
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and also disregard the possibility of sites being mapped onto themselves, so that there 
are no sites of class 1. However the equations can he easily generalized to include 
such a possibility. The overlap order parameters for our remaining two classes of sites 
are given respectively by 

1 m 2 = F T  (s,)(t! +tbl,,)  (14) 

1 
m 3 = 7 3 ( s ) ( t : - t ~ l ; , )  ( 1 9  

so that 

m = f (  m2 + m,).  (16) 

The distinction between the two overlap parameters is that m2 measures the overlap 
of the configuration with the pattern at sites where the pattern is symmetric; m, measures 
the overlap at sites where the pattern is antisymmetric. 

We must also consider the ordering due to the symmetry transform interaction. For 
this purpose we introduce 

g = &2+ g3) (17) 

where 

1 
g 2 = x z  (s<sm,i))/6~+f~liJl (18) 

1 
g3 =x: (sisrIfJ)161 -t:l;Jl. (19) 

The order parameter g measures the symmetry invariance of the system. The two 
orders, overlap with a stored pattern and symmetry invariance, compete directly in 
sites of class 3, where the spins in pattern 1 at the site and image site are of opposite 
sign. 

The mean field theory of the Hopfield model [2] is now a well trodden path. In 
appendix 1 we indicate how the calculation has to be modified to deal with the local 
symmetry transform interactions and derive zero temperature mean-field equations. 
The retrieval phase of the model is characterized by the existence of a solution of 
(40)-(44) of the form 

m,>O m,>O m 2 > m 3  

g2>0 g,<o g>o 

In the non-retrieval phase we only have a solution 

m = m2 = m, = O  

g,>o g 2 = g , .  

The non-retrieval phase has a large degree of symmetry under the transformation 
i + r ( i ) ;  we shall refer to it  as the symmetric phase to contrast with the usual spin 
glass non-retrieval phase, although the symmetry may not be total ( g <  1). In  figure 1 
the phase boundary is plotted in the space of a - a .  At a = O  we have a,=O.138 
recovering the usual Hopfield case. As a increases a, decreases until at a = 1.0 we 
have ac = 0, showing that at this value of a there is no retrieval phase. 
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Figure 1. Phase diagram for the Hopfield model with: full C U N ~ ,  Z, symmetry interactions; 
dashed curve, random external fields. The retrieval ( I )  and non-retrieval (11) phases are 
described in the text. 
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0 0.5 1 . 0  

Figure 1. Phase diagram for the Hopfield model with: full C U N ~ ,  Z, symmetry interactions; 
dashed curve, random external fields. The retrieval ( I )  and non-retrieval (11) phases are 
described in the text. 

In figure 2 we plot the overlap order parameters within the retrieval phase. One 
should note that m2> m3, indicating that the quality of retrieval at sites where the 
pattern is symmetric is superiorto the quality at sites where the pattern is antisymmetric. 
This also implies that there is some symmetry invariance in the phase ( g  > 0), however 
this effect is small (g<< 1) so that the retrieval phase is not significantly altered from 
the Hopfield case. One may summarize figures 1 and 2 by saying that the two interaction 
components compete rather than co-operate. 

3.1. The Hopfield model wifh random externalfields 

As we are interested in how the symmetry transform interactions act as a noise upon 
the Hopfield interactions it is useful to compare the phase diagram resulting from 
equations (40)-(44) to a phase diagram resulting from a simpler form of noise. Equation 
(8) shows that addition of symmetry interactions results in an additional component 

0 0 01. 
0 

Figure 2. Overlaps mi and m, against 01 for n =0.4; curves are as in figure 1. Symbols are 
results of simdatians for network of 256 spins. Error bars are shown only when they are 
larger than the symbol size. 
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of magnitude a to the local field generated by the Hopfield interactions. The sign of 
this field component is  determined by the direction of the spin at the image site. A 
simpler form of noise results if the signs of these field components are assigned 
randomly. For this model, which we shall refer to  as the Hopfield model with random 
external fields, the configurational energy is given by 

where each C is selected randomly according to the distribution 

P ( 0  =+(a({- I ) +  S(C+ 1)). (21) 
The random fields are then quenched in contrast to  the fields in (8)  which are 'annealed' 
in character. The order parameters m2 and m, now measure the overlap at sites where 
the pattern spin is in  the same and opposite direction, respectively, as the random 
externai iieid. We have 

The zero temperature mean-field equations are given in appendix 2. 
The phase diagram for this model is also shown in figure 1 .  The non-retrieval phase 

is where the only solution to the equations gives m3 < 0 indicating that the spins are 
aligned to the random external fields rather than to a stored pattern. If one ignores 
the physical difference in the non-retrieval phase then the two phase diagrams are 
strikingly similar. To investigate the extent of the similarity figure 2 compares the 
solutions of the zero temperature mean-field equations for the two models. The m2 
curves are almost identical, so much so that the random external field curve is obscured. 
For m3 however, the random external field model gives a higher value than the 
symmetry-transform model. This suggests that at sites of class 3 the symmetry-transform 
interactions act as ~i stronger noise than random external fields on the Hopfield 
interactions. To summarize, it appears that the zero temperature mean-field equations 
for the Hopfield model with random external fields approximate rather well the far 
more complicated equations for the Hopfield model with symmetry interactions. 

4. Parallel dynamics and invariant pattern recognition 

In this section we will present numerical results of the performance of the model in 
recognition of transformed patterns. The analysis of the previous section provides a 
theoretical framework within which the numerical results may be understood as 
demonstrating the main finding of the paper: the model can recognize an extensive 
number of transformed patterns. Before presenting the simulations we will argue that 
parallel dynamics should be used for this purpose. 

we showed in section 2 thai using the symmetry transform under paraiiei and 
sequential dynamics gives considerably different configurational flows. I f  we consider 
the simple model of section 2, impose a transformed version of a stored pattern on 
the network and iterate, then for serial dynamics the direction of the configurational 
flow induced by the symmetry transform interaction is towards a symmetrized version 

. . I  
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of the pattern. In terms of the overlap order parameters the transformed pattern is 
given by m2 = 1, m, = -1  and m = 0; the symmetrized version is given by m2 = I ,  m, = o 
and m =OS. Thus starting from the transformed exact pattern we reach a configuration 
which is the pattern with 25% noise. This contrasts with parallel dynamics where after 
one time step the exact pattern would be obtained. In the light of this we consider the 
use of serial dynamics less suitable for invariant pattern recognition than the use of 
parallel dynamics. 

However we have seen that for random sequential dynamics the retrieval phase 
persists in the presence of the symmetry transform interactions for an extensive number 
of stored patterns. In order to verify that this is also the case for parallel dynamics, 
we will present numerical simulations of the model. First we will use the results from 
section 3 to demonstrate the possibility of symmetry-invariant recognition for an 
extensive number of patterns under parallel dynamics, and to estimate the optimal 
symmetry transform interaction strength. 

If parallel dynamics are chosen one can derive exact equations for the first time 
step of the iteration [14]. 

M R Evans er a/ 

m + a  
m,(l) = + ( I  + m,) erf - +;(I - m 3 )  [XI 

In these equations the order parameters on the RHS are evaluated at f = 0. Starting 
from the symmetry-transformed pattern ( m2 = 1, m3 = - 1) we find 

With a high enough value of a the pattern will be accurately reproduced after one 
parallel iteration. However if a is too large then at the second time step the transformed 
pattern will be reproduced. 

In order to gauge the optimum value of a we can use the following guidelines: 

a>& ( 2 7 )  

a < 4 a )  (28) 

where .,(a) is the phase boundry plotted in figure 1. The first condition comes from 
the requirement that the transformed pattern be mapped accurately onto the pattern 
after one parallel update; the second condition comes from the requirement that the 
symmetry interactions should not disrupt the retrieval phase of the Hopfield model. 
Although we are considering parallel dynamics, the value of a ,  for random sequential 
dynamics should give a good approximation as to when the retrieval phase is destroyed. 
To determine the optimal value of a from (27)  and (28) one simply searches for the 
maximum value of .,(a) subject to the constraint (27). These approximate arguments 
suggest an optimum value of a =0.4 at which ac= 0.06. These numbers indicate that 
if we desire invariant pattern recognition, then although the maximum capacity of the 
network is reduced from the Hopfield case, we can still store an extensive number of 
patterns. 

In figure 3 the results of numerical simulations of invariant pattern recognition 
using parallel dynamics are presented. The simulations were carried out on the 
Edinburgh Concurrent Supercomputer (a Meiko Computing Surface) in the OCCAM 
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Figure 3. Simulation results for recognizing transformed patterns under parallel dynamics. 
Error bars are shown only when they are larger than the symbol size. The liner are drawn 
solely in order 10 guide the eye between simulation points for constant a. 

language. The program can be run on any number of transputers with any number of 
spins. All the simulation results presented here used a network of 256 spins. Each 
point in the figures is an average over 25 sets of nominated patterns. In these simulations 
the transformed pattern was presented to the network and 20 parallel iterations were 
performed. The final overlaps were then calculated. The even number of iterations is 
convenient because if the symmetry transform interactions dominate and the configur- 
ation is symmetry transformed at each time step, then after an even number of iterations 
the configuration will return near to the transformed pattern, which has small overlap 
with the nominated pattern. We also found that 20 iterations were enough to ensure 
that a fixed point was reached if one existed. 

Figure 3 indicates the existence of an optimal value of a because the curves rise 
and fall, to some extent, as a increases. At a =0.2 one may note that even for very 
low a the recall of the transformed pattern is not good, indicating that the dynamic 
tendency to transform the pattern is not strong enough. As a is increased through 0.3 
and 0.4 the retrieval quality at all a increases. For a equal to 0.5 the retrieval quality 
begins to fall. Finally for a =0.6 the recall is excellent at a i 0 . 0 2 ,  but deteriorates 
rapidly as a increases. This reflects the disruption of the retrieval attractors at low e, 
for high a. The optimal value appears to be a = 0.4, which gives the highest retrieval 
quality at all a. This is in agreement with the prediction from (27), (28). However the 
retrieval quality m appears to deteriorate when a passes 0.05, which is lower than the 
a, predicted from (27), (28). 

5. Discussion 

In this work we have investigated the Hopfield model with Z ,  symmetry transform 
interactions with two aims in mind. Firstly we have investigated how the local symmetry 
transform interaction acts as a noise upon the long range Hopfield interaction. Secondly 
we have demonstrated that symmetry invariant pattern recognition is possible with 
this simple model, for an extensive number of stored patterns. 
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The replica symmetric mean-field theory of section 3 is in fact a solution of a model 
with both long range and local interactions. We have found that in the ordered phase 
of the long range interactions (the retrieval phase) the local interactions act as a noise. 
The effect of this noise is very similar to imposing random external fields at each site. 
This supplements the results of Sompolinsky [4] where Gaussian noise in synapses 
was examined. 

With regard to symmetry invariant pattern recognition it appears that sequential 
updating is unsuitable because the configurational flow induced by the symmetry 
transform interactions is towards a symmetry invariant configuration. However under 
parallel dynamics our simulations show that transformed versions of an extensive 
number of paterns may be recognized for a range of symmetry transform interaction 
strengths. Furthermore there is an optimal symmetry transform interaction strength 
that best balances the competition between the two interactions. 

It would be of interest to discover whether symmetry invariant recognition is possible 
for an extensive number of patterns when a more sophisticated symmetry group, such 
as Z 3 ,  is desired. However in this case the techniques employed in section 3 are no 
longer applicable because the interactions are no longer symmetric. 
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Appendix 1. Replica symmetric theory 

In the mean-field theory we look for the non-ergodic phase with macroscopic overlap 
m with a stored pattern. We proceed as in [2] to use the replica trick [I21 to average 
the free energy over the quenched variables {.$}. We make a replica symmetric ansatz 
to obtain the free energy as 

where the double angular brackets stand for the quenched average over the set of (6;) 
and 9 is the replica symmetric Edwards-Anderson order parameter 

= 9  for p # U. 
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It  is only the final term of (29) that differs from the equivalent expression for the 
Hopfield model. We develop this term by factorizing over pairs of sites i, r ( i )  and 
performing two Gaussian transforms t o  linearize the first term inside the exponential 
for each pair of sites. The configurational trace may then be taken to give the free 
energy as 

where the Gaussian measure is denoted by 

The values taken by the order parameters appearing in (3 1) are given by the solution 
of the saddle point equations. In addition we have the order parameter associated with 
the symmetry transform interactions 

(33) a f  g=-2- .  
aa 

One finds the mean field equations to be 

e*" sinh[P(& (z+z , )+2m)]  (34) m2=I Dr I Dzve2P' cosh[p(&(z+ z,)+2m)]+cosh[P(& ( 2 - z , ) ) ]  

(35) 
s i n h [ p ( G ( z -  z,)+Zm)] 

m3= J Dz J DZ*e2pn cosh[P& ( z +  z,)]+cosh[p(& ( z  - z,) +2m)]  

e4'" s i n h 2 [ p ( G ( z  + z,))]+ sinh2[P(& ( z  - z,)+2m)] 
(36) +' 1 Dz J Dzn (e2pu cosh[P(& (z+z,))]+cosh[p(& (z-z,)+2m)])' 

(38) 
e2'" cosh p [ ( &  ( z +  zT)+2m)]-cosh[p& ( z  - z-)] 

"= 1 Dz Dzn e20" cosh PI(& ( z +  zm)+2m)]+cosh[P& ( z  - z,,)] 

In (34)-(39) the average over the independent quenched spin variables 6' and 6; has 
been taken. The  parameters with subscript 2 result from the contributions with 6' = 6:; 
the parameters with subscript 3 result from the contributions with 6' = -6;. 
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Obtaining (40)-(44), the zero temperature limit of the mean-field equations (34-39), 
is a task requiring some patience. The strategy used is to examine the integrands in 
the equations and determine the regions of the z - z ,  plane where they do not vanish. 

where 

2 "  
erf[x] =- I d r  e-'*. 

G o  
(45) 

In this process one finds that the symmetry m,( -a)  = m 2 ( a ) ;  g , ( -a )  = g 2 ( a )  apparent 
in (34)-(39), is broken in the @+a limit, because one must restrict the equations to 
the case a > 0. The a = 0 limit of these equations gives the equivalent equations for 
the Hopfield model [2]. 

Appendix 2. Random external field model zero temperature equations 

The following zero temperature mean field equations for the random external field 
model are a straightforward extension of those of the Hopfield model [2]. 

WI,  = erf - [=I 
(46) 

(47) 
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